
TYBCA (Sem – 5) 1

PHP Introduction:

 PHP is an acronym for "PHP: Hypertext Preprocessor"

 PHP, which originally stood for "Personal Home Page" but now recursively

stands for "PHP: Hypertext Preprocessor," is a widely used server-side scripting

language designed specifically for web development.

 PHP code is executed on the server, and the result (usually HTML) is sent to

the client’s browser.

 PHP is free to download and use.

 To understand its role, it's crucial to differentiate between client-side and

server-side operations in web development:

o Client-Side (Front-end):

This refers to what the user sees and interacts with directly in their web

browser. Technologies like HTML (for structure), CSS (for styling), and

JavaScript (for interactivity) run on the user's computer (the "client").

When you click a button or fill out a form, client-side scripts might handle

basic validation or visual changes.

o Server-Side (Back-end):

This refers to the operations that happen on the web server before any

content is sent to the user's browser. This is where PHP plays its vital role.

When a user requests a web page that contains PHP code, the web server

(e.g., Apache, Nginx) passes that request to a PHP interpreter. The PHP

interpreter then executes the PHP code.

Aspect Server-side Scripting Client-side Scripting

Execution

Location
Runs on the web server Runs on the user's browser

Language

Examples

PHP, Python, ASP.NET, Node.js,

Java
HTML, CSS, JavaScript

Purpose

Generate dynamic content, handle

database interaction, manage user

sessions, and perform server

operations

Control user interface, validate

form data, and improve user

experience without needing to

contact the server

Output
Typically, HTML, JSON, or XML sent

to the browser

Directly affects the display and

behaviour of web pages in the

browser

Access to

Server

Resources

Can access server files, databases,

and perform complex tasks

Cannot access server files or

databases directly

 Unit 1 : Core PHP

TYBCA (Sem – 5) 2

Visibility

to Users

Hidden from users, users cannot

see the server-side code

Visible to users, users can view the

source code from the browser

Page

Reload

Often requires page reload or

server communication for changes

Can update the page without

reloading (using JavaScript/ AJAX)

Security
More secure as code runs on the

server

Less secure (code can be seen and

modified by users)

Examples

of Use

User authentication, data storage,

content management systems

Form validation, interactive forms,

animations, dropdowns

Role of PHP in server-side web development:

 Dynamic Content Generation:

o Unlike static HTML pages that display the same content to every user, PHP

allows for the creation of dynamic content. This means the content of a

web page can change based on various factors, such as user input, data

from a database, or the time of day.

o Examples: Displaying a user's personalized dashboard, showing product

listings from an e-commerce catalog, or generating search results based

on a query.

 Database Interaction:

o One of PHP's most powerful features is its seamless ability to connect and

interact with various databases (like MySQL, PostgreSQL, SQLite, etc.).

o It allows web applications to store, retrieve, update, and delete data, which

is fundamental for almost all modern web applications (e.g., user accounts,

blog posts, product inventories, order details).

 Form Handling and Data Processing:

o When a user submits a form on a website (e.g., registration, contact form,

login), PHP is commonly used to process that data.

o It can validate the input, sanitize it (to prevent security vulnerabilities),

store it in a database, send emails, or perform other necessary actions

based on the submitted information.

 Session Management and User Authentication:

o PHP enables the management of user sessions, allowing a website to

"remember" a user's state across multiple page requests. This is crucial for

features like user logins, shopping carts, and personalized experiences.

o It handles user authentication (verifying identity) and authorization

(determining what a user is allowed to do).

 File System Operations:

o PHP can interact with the server's file system. This means it can read from,

 Unit 1 : Core PHP

TYBCA (Sem – 5) 3

write to, and manage files on the server.

o Examples: Handling file uploads (like profile pictures), generating and

managing log files, or creating dynamic reports.

 Integration with Other Technologies:

o PHP can easily integrate with other technologies, including client-side

scripts (HTML, CSS, JavaScript), external APIs (Application Programming

Interfaces) for services like payment gateways or social media, and various

server environments.

 Security:

o By keeping sensitive operations and data on the server, PHP contributes to

the security of web applications. Client-side code is visible to the user, but

PHP code remains on the server, preventing direct access to sensitive logic

or database credentials.

NOTE: In essence, PHP acts as the "brain" of many websites and web applications.

It handles all the complex logic, data management, and communication with the

server's resources, ultimately generating the HTML (and sometimes CSS/JavaScript)

that the user's browser then displays.

Characteristics of PHP

Five important characteristics make PHP 's practical nature possible –

 Simplicity

 Efficiency

 Security

 Flexibility

 Familiarity

History and evolution of PHP:

Year Version Key Features

1994 Creation of PHP Tools
Rasmus Lerdorf created some CGI scripts in C to track

visitors

1995

PHP/FI (Personal

Home Page / Forms

Interpreter)

Released as PHP/FI 2.0, included HTML embedding

and basic form handling

1997-

1998

PHP 3

Full rewrite by Andi Gutmans and Zeev Suraski,

introduced extensibility and improved performance,

renamed to "PHP: Hypertext Preprocessor"

 Unit 1 : Core PHP

TYBCA (Sem – 5) 4

2000

PHP 4

Powered by the new "Zend Engine 1.0", improved

speed and performance, better support for complex

applications

2004

PHP 5

Introduction of Object-Oriented Programming (OOP),

better XML support, PDO (PHP Data Objects) for

database interaction, and improved error handling

2015

PHP 7

Major performance boost (up to 2x faster), reduced

memory usage, introduced scalar type declarations,

return type declarations, and error handling

improvements

2020

onwards

PHP 8

Introduced JIT (Just-In-Time compilation) for faster

execution, attributes (annotations), union types,

match expressions, and other modern programming

features

Installation and configuration using XAMPP/WAMP:

 Unit 1 : Core PHP

TYBCA (Sem – 5) 5

Echo Keyword

echo is a language construct (not a function) used to output one or more strings. As

echo is not a function you do not required to use parentheses with it. However, if you

want to pass more than one parameter to echo(), using parentheses will generate a

parse error.

Source Code

<html>

<head>

<title>Hello World</title>

</head>

<body>

<?php echo "Hello, World!"; ?>

</body>

</html>

Output

Hello, World!

echo and print statement

“echo” and “print” are more or less the same. They are both used to output data to

the screen. “echo” has no return value while “print” has a return value of 1 so it can

be used in expressions. “echo” can take multiple parameters (although such usage is

rare) while “print” can take one argument. “echo” is marginally faster than “print”.

Echo Print

1. echo does not return any value.

2. We can pass multiple strings
separated by comma (,) in echo.

<?php

$name = “Alex”;

#output  “Hello Alex!!!”

1. print always returns an integer
value, which is 1.

2. Using print, we cannot pass
multiple arguments.

<?php

$name = “Alex”;

#this statement will give error

 Unit 1 : Core PHP

TYBCA (Sem – 5) 6

echo “Hello ”, $name, “!!!”;

?>

3. echo is faster than print statement.

4. Cannot be used in expression.

<?php

$x = 5;

#this statement will give error

($x>0) ? echo('positive') : echo('negative');

?>

print “Hello ”, $name;

?>

3. print is slower than echo statement.

4. Can be used in expression.

<?php

$x = 5;

#output  “positive”

($x>0) ? print('positive') : print('negative');

?>

Comments:

 Comments in any computer program (such as a PHP program) is a certain

explanatory text that is ignored by the language compiler/interpreter.

 Its purpose is to help the user understand the logic used in the program

algorithm.

 Although placing comments in the code is not essential, it is a highly

recommended practice.

 The comments also serve as program documentation.

 Comments are also useful when the code needs to be debugged and

modified.

 Single line comments are provided using # or //

o Ex: //This is a comment OR #This is a comment

 The multiline style of commenting is the same as in C. One or more lines

embedded inside the "/*" and "*/" symbols are treated as a comment.

o Ex: /* This is a

multi-line comment

for better understanding */

Variables:

 Variable starts with the $ sign, followed by the name of the variable:

<?php

$txt = "Hello world!";

$x = 5;

$y = 10.5;

?>

 Unit 1 : Core PHP

TYBCA (Sem – 5) 7

Rules for PHP variables:

 A variable starts with the $ sign, followed by the name of the variable

 A variable name must start with a letter or the underscore character

 A variable name cannot start with a number

 A variable name can only contain alpha-numeric characters and underscores

(A-z, 0-9, and _)

 Variable names are case-sensitive ($age and $AGE are two different

variables) Note: Remember that PHP variable names are case-sensitive!

Variable Scope

PHP has three types of variable scopes:

 Local variable

 Global variable

 Static variable

Local Variable Global Variable Static Variable

A variable declared within

a function has a LOCAL

SCOPE and can only be

accessed within that

function.

<?PHP

function myTest() {

$x = 5;

// local scope

echo "<p>Variable x inside
function is: $x</p>";

}

myTest();

// using x outside the function
will generate an error

echo "<p>Variable x outside
function is: $x</p>";

?>

A variable declared

outside a function has a

GLOBAL SCOPE and can

only be accessed outside

a function.

<?PHP

$name = "Sanaya Sharma";

//Global Variable

function global_var()

{

global $name;

echo "Variable inside the
function: ". $name;

echo "</br>";

}

global_var();

echo "Variable outside the
function: ". $name;

?>

It is a feature of PHP to

delete the variable, once

it completes its execution

and memory is freed.

Sometimes we need to

store a variable even

after completion of

function execution.

Therefore, another

important feature of

variable scoping is static

variable. We use the

static keyword before the

variable to define a

variable, and this variable

is called as static variable.

Static variables exist only

in a local function, but it

does not free its memory

after the program

execution leaves the

scope.

 Unit 1 : Core PHP

TYBCA (Sem – 5) 8

 Another way to use the

global variable inside the

function is predefined

$GLOBALS array.

<?PHP

$num1 = 5;

//global variable

$num2 = 13;

//global variable

function global_var()

{

$sum = $GLOBALS['num1']
+ $GLOBALS['num2'];

echo "Sum of global variables
is: " .$sum;

}

global_var();

?>

<?PHP

function static_var()

{

static $num1 = 3;

//static variable

$num2 = 6;

//Non-static variable

//increment in non-static
variable

$num1++;

//increment in static variable

$num2++;

echo "Static: " .$num1
."</br>"; echo "Non-static: "
.$num2 ."</br>";

}

//first function call

static_var();

//second function call
static_var();

?>

OUTPUT

Output:

Static: 4

Non-static: 7

Static: 5

Non-static: 7

PHP $ and $$ Variables:

The $var (single dollar) is a $ variable is a normal PHP variable that contains a value.

A variable can be allocated a wide range of values, including numbers, texts and

arrays.

 Unit 1 : Core PHP

TYBCA (Sem – 5) 9

The $$var (double dollar) is a dynamic variable that takes the value of a normal

variable and treats that as the name of the variable.

Source Code:

<?php

$x=”Hello”;

$$x=200;

echo $x . “</br>”;

echo $$x.”</br>;

echo $Hello;

?>

Output:

Hello

200

200

<

Constants

 By default, a PHP constant is case-sensitive.

 By convention, constant identifiers are always uppercase.

 A constant name starts with a letter or underscore, followed by any number

of letters, numbers, or underscore.

 There is no need to write a dollar sign ($) before a constant, however one

has to use a dollar sign before a variable.

 Constants are global, so they can be accessed from anywhere in the script.

PHP constants are name or identifier that can't be changed during the execution of

the script except.

1. Using define() function

2. Using const keyword

Syntax:

define (name, value)

Example:

<?PHP

define("MSG1","Hello PHP ");

echo MSG1;

const MSG2="Hello const by PHP ";

echo MSG2;

?>

Data types

A type specifies the amount of memory that allocates to a value associated with it.

 Scalar Datatype: It holds single value only

 Unit 1 : Core PHP

TYBCA (Sem – 5) 10

 Compound Datatype: It holds multiple values

 Special Datatype: Used for specific use

.

Datatype Description

Boolean Booleans are the simplest data type works like switch. It holds only

two values: TRUE (1) or FALSE (0)

Integer Integer means numeric data with a negative or positive sign. It holds

only whole numbers, i.e., numbers without fractional part or decimal

points. The range of an integer must be lie between 2,147,483,648

and 2,147,483,647 i.e., -231 to +231

Float A floating-point number is a number with a decimal point.

String A string is a non-numeric data type. It holds letters or any alphabets,

numbers, and even special characters. String values must be enclosed

either within single quotes or in double quotes. But both are treated

differently.

 Source Code Output

 <?php Hello Learn PHP

 $txt1 = "Learn PHP"; Hello $txt2

 $txt2 = "Teach PHP";

 echo "Hello $txt1";echo

'
';

 echo 'Hello $txt2';

 ?>

 Unit 1 : Core PHP

TYBCA (Sem – 5) 11

Array An array is a compound data type. It can store multiple values of same

data type in a single variable.

$scores = [1, 2, 3];

Objects Objects are the instances of user-defined classes that can store both

values and functions.

Resource Resources are not the exact data type in PHP . Basically, these are

used to store some function calls or references to external PHP

resources. For example - a database call.

NULL Null is a special data type that has only one value: NULL

var_dump(variable name)

This function is used to dump information about a variable.

INPUT:

<?php

$a=123;

$b=”Hello”;

$c=’123’;

$d=”123”;

?>

OUTPUT:

int(123) string(5) "Hello" string(3)
"123" string(3) "123"

/* As mentioned in above source code

first display datatype and length for

string variable and datatype and value
in Integer data type */

INPUT:

<?php

$a = array(1, 2, array("a", "b", "c"));
var_dump($a);

?>

OUTPUT:

array(3) {

[0]=> int(1)

[1] => int(2)

[2] =>array(3) {

[0] => string(1) "a"

[1] => string(1) "b"

[2] => string(1) "c"

}

}

Type Casting

Type casting in PHP is a way to convert a value from one data type to another. It's

often used when you need to perform an operation that requires a specific data type,

or when you want to ensure that a variable holds a certain type of data.

Here are the different types of casts available in PHP:

 (int), (integer): Casts to integer

 Unit 1 : Core PHP

TYBCA (Sem – 5) 12

 (bool), (boolean): Casts to boolean

 (float), (double), (real): Casts to float

 (string): Casts to string

 (array): Casts to array

 (object): Casts to object

 (unset): Casts to NULL (available in PHP 7.2.0 and later, deprecated in

PHP 8.0.0, removed in PHP 9.0.0)

How it works:

You place the desired type in parentheses before the variable you want to cast.

Example:

<?php

$number = "123"; // This is a string

$integer_number = (int) $number; // Casts to integer

echo gettype($number); // Output: string

echo gettype($integer_number); // Output: integer

$float_number = 10.5; // This is a decimal value

$int_from_float = (int) $float_number; // Cast to integer, removes the decimal part

echo $int_from_float; // Output: 10

$string_boolean = "true"; // This is a Boolean value

$boolean_value = (bool) $string_boolean; // Casts to boolean

var_dump($boolean_value); // Output: bool(true)

$array_from_string = (array) "hello"; // This is an array

print_r($array_from_string); // Output: Array ([0] => hello)

?>

Important considerations:

 Loss of data: When casting from a more precise type (like float) to a less

precise type (like integer), you might lose data (e.g., the decimal part of a

float).

 Unit 1 : Core PHP

TYBCA (Sem – 5) 13

 Behavior with different types: The behavior of type casting can vary

depending on the original data type and the target data type. For instance,

converting a non-numeric string to an integer will result in 0.

 Temporary conversion: Type casting creates a copy of the variable in the

new type; it does not change the original variable's type. If you want to

permanently change the type of a variable, you'd reassign it: $variable =

(new_type) $variable;

Operators

PHP divides the operators in the following groups:

Arithmetic operators: The PHP arithmetic operators are used to perform common

arithmetic operations such as addition, subtraction, etc. with numeric values.

Operator Name Example Explanation

+ Addition $a + $b Sum of operands

- Subtraction $a - $b Difference of operands

* Multiplication $a * $b Product of operands

/ Division $a / $b Quotient of operands

% Modulus $a % $b Remainder of operands

** Exponentiation $a ** $b $a raised to the power $b

Assignment operators: The assignment operators are used to assign value to

different variables. The basic assignment operator is "=".

Operator Name Example Explanation

= Assign $a = $b
The value of right operand is

assigned to the left operand.

+= Add then Assign $a +=$b Addition same as $a = $a + $b

-=
Subtract then

Assign
$a =$b

Subtraction same as $a = $a -
$b

*=
Multiply then

Assign
$a *= $b

Multiplication same as $a = $a *
$b

/=
Divide then Assign

(quotient)
$a/=$b

Find quotient same as $a = $a /
$b

%=
Divide then Assign

(remainder)
$a%=$b

Find remainder same as $a = $a
% $b

Conditional assignment operators: The bitwise operators are used to perform bit-

level operations on operands. These operators allow the evaluation and manipulation

of specific bits within the integer.

 Unit 1 : Core PHP

TYBCA (Sem – 5) 14

Operator Name Example Explanation

& And $a & $b
Bits that are 1 in both $a and $b are set

to 1, otherwise 0.

|
Or (Inclusive

or)
$a | $b

Bits that are 1 in either $a or $b are set
to 1

^

Xor
(Exclusive

or)

$a ^ $b
Bits that are 1 in either $a or $b are set

to 0.

~ Not ~$a
Bits that are 1 set to 0 and bits that are

0 are set to 1

<< Shift left
$a <<

$b
Left shift the bits of operand $a $b steps

>> Shift right
$a >>

$b
Right shift the bits of $a operand

by $b number of places

Comparison Operators: Comparison operators allow comparing two values, such

as number or string. Below the list of comparison operators are given:

Operator Name Example Explanation

== Equal $a == $b Return TRUE if $a is equal to $b

=== Identical
$a ===

$b
Return TRUE if $a is equal to $b, and

they are of same data type

!== Not identical
$a !==

$b
Return TRUE if $a is not equal to $b,

and they are not of same data type
!= Not equal $a != $b Return TRUE if $a is not equal to $b

<> Not equal $a <> $b Return TRUE if $a is not equal to $b

< Less than $a < $b Return TRUE if $a is less than $b

> Greater than $a > $b Return TRUE if $a is greater than $b

<=
Less than or

equal to
$a <= $b

Return TRUE if $a is less than or equal
$b

>=
Greater than

or equal to
$a >= $b

Return TRUE if $a is greater than or

equal $b

<=> Spaceship
$a

<=>$b

Return -1 if $a is less than $b

Return 0 if $a is equal $b
Return 1 if $a is greater than $b

Incrementing/Decrementing Operators: The increment and decrement

operators are used to increase and decrease the value of a variable.

Operator Name Example Explanation

++

Increment

++$a
Increment the value of $a by one, then

return $a

$a++
Return $a, then increment the value of $a

by one

 Unit 1 : Core PHP

TYBCA (Sem – 5) 15

--

decrement

--$a
Decrement the value of $a by one, then

return $a

$a--
Return $a, then decrement the value of $a

by one

Logical Operators: The logical operators are used to perform bit-level operations

on operands. These operators allow the evaluation and manipulation of specific bits

within the integer.

Operator Name Example Explanation

And And $a and $b Return TRUE if both $a and $b are true

Or Or $a or $b Return TRUE if either $a or $b is true

Xor Xor $a xor $b
Return TRUE if either $ or $b is true but

not both

! Not ! $a Return TRUE if $a is not true

&& And $a && $b Return TRUE if $a and $b are true

|| Or $a || $b Return TRUE if either $a or $b is true

String Operators: The string operators are used to perform the operation on strings.

There are two string operators in PHP , which are given below:

Operator Name Example Explanation

. Concatenation $a . $b Concatenate both $a and $b

.=

Concatenation

and

Assignment
$a .= $b

First concatenate $a and $b, then

assign the concatenated string to $a,
e.g. $a = $a . $b

Array Operators: The array operators are used in case of array. Basically, these

operators are used to compare the values of arrays.

Operator Name Example Explanation

+ Union $a + $y Union of $a and $b

== Equality $a == $b
Return TRUE if $a and $b have same

key/value pair

!= Inequality $a != $b Return TRUE if $a is not equal to $b

=== Identity $a === $b

Return TRUE if $a and $b have same

key/value pair of same type in same

order

!==
Non-

Identity
$a !== $b Return TRUE if $a is not identical to $b

 Unit 1 : Core PHP

TYBCA (Sem – 5) 16

Conditional Statements

 To write code that perform different actions based on the results of a logical

or comparative test condition at run time.

o The if statement

o The if...else statement

o The if...elseif...else statement

o The switch… case statement

The if Statement:

 The if statement is used to execute a block of code only if the specified

condition evaluates to true.

Syntax:

if(condition) {

// Code to be executed

}

Example:

<?PHP

$d = date("D");

if($d == "Fri") {

echo "Have a nice weekend!";

}

?>

Output: "Have a nice weekend!" if the current day is Friday:

The if...else Statement

 You can enhance the decision-making process by providing an alternative

choice through adding an else statement to the if statement.

 The if...else statement allows you to execute one block of code if the specified

condition is evaluating to true and another block of code if it is evaluating to

false.

Syntax:

if(condition) {

// Code to be executed if condition is true

}

else {

// Code to be executed if condition is false

 Unit 1 : Core PHP

TYBCA (Sem – 5) 17

}

Example:

<?PHP

$d = date("D");

if ($d == "Fri") {

echo "Have a nice weekend!";

}

else {

}

?>

echo "Have a nice day!";

Output: "Have a nice weekend!"

if the current day is Friday, otherwise it will

Output: "Have a nice day!"

The if...elseif...else Statement

 The if...elseif...else a special statement that is used to combine multiple if...else

statements.

Syntax:

if(condition1) {

// Code to be executed if condition1 is true

}

elseif (condition2) {

// Code to be executed if the condition1 is false and condition2 is true

}

else

{

}

// Code to be executed if both condition1 and condition2 are false

Example:

<?PHP

$d = date("D");

if ($d == "Fri") {

echo "Have a nice weekend!";

 Unit 1 : Core PHP

TYBCA (Sem – 5) 18

}

elseif ($d == "Sun") {

echo "Have a nice Sunday!";

}

else {

}

?>

echo "Have a nice day!";

Output: "Have a nice weekend!"

if the current day is Friday, and

Output: "Have a nice Sunday!"

if the current day is Sunday, otherwise it will

Output: "Have a nice day!"

The switch-case statement:

 It is an alternative to the if-elseif-else statement, which does almost the same

thing. The switch-case statement tests a variable against a series of values

until it finds a match, and then executes the block of code corresponding to

that match.

Syntax:

switch(n) {

case label1:

// Code to be executed if n=label1 break;

case label2:

// Code to be executed if n=label2 break;

...

default:

// Code to be executed if n is different from all labels

}

Example: Consider the following example, which display a different message

for each day.

<?PHP

$today = date("D");

 Unit 1 : Core PHP

TYBCA (Sem – 5) 19

switch($today) {

case "Mon":

echo "Today is Monday. Clean your house.";

break;

case "Tue":

echo "Today is Tuesday. Buy some food.";

break;

case "Wed":

echo "Today is Wednesday. Visit a doctor.";

break;

case "Thu":

echo "Today is Thursday. Repair your car.";

break;

case "Fri":

echo "Today is Friday. Party tonight.";

break;

case "Sat":

echo "Today is Saturday. Its movie time.";

break;

case "Sun":

echo "Today is Sunday. Do some rest.";

break;

default:

echo "No information available for that day.";

break;

}

?>

Arrays

 It is used to hold multiple values of similar type in a single variable.

Advantage of PHP Array

 Less Code: We don't need to define multiple variables.

 Easy to traverse: By the help of single loop, we can traverse all the elements

of an array.

 Sorting: We can sort the elements of array.

There are 3 types of array in PHP.

1. Indexed Array 2. Associative Array 3. Multidimensional Array

 Unit 1 : Core PHP

TYBCA (Sem – 5) 20

Indexed Array

 PHP index is represented by number which starts from 0. We can store number,

string and object in the PHP array. All PHP array elements are assigned to an

index number by default.

 There are two ways to define indexed array:

$season = array("summer","winter","spring","autumn");

echo "Season are: $season[0], $season[1], $season[2] and $season[3]";

OR

$season[0] = "summer";

$season[1] = "winter";

$season[2] = "spring";

$season[3] = "autumn";

echo "Season are: $season[0], $season[1], $season[2] and $season[3]";

Associative Array

 We can associate name with each array elements in PHP using symbol.

 There are two ways to define associative array:

$salary = array("Sonoo"=>"350000", "John"=>"450000", "Kartik"=>"200000");

echo "Sonoo salary: " . $salary["Sonoo"] . "
";

echo "John salary: " . $salary["John"] . "
";

echo "Kartik salary: " . $salary["Kartik"] . "
";

OR

$salary["Sonoo"] = "350000";

$salary["John"] = "450000";

$salary["Kartik"] = "200000";

echo "Sonoo salary: " . $salary["Sonoo"] . "
";

echo "John salary: " . $salary["John"] . "
";

echo "Kartik salary: " . $salary["Kartik"] . "
";

Multidimensional array

 An array containing one or more arrays and values are accessed using multiple

indices.

 In a multidimensional array, each element in the main array can also be an

array.

 Unit 1 : Core PHP

TYBCA (Sem – 5) 21

 Each element in the sub-array can be an array, and so on.

$AmazonProducts = array(

array(“BOOK", "Books", 50),

array("DVDs", “Movies", 15),

array(“CDs", “Music", 20)

);

$AmazonProducts = array (

array (“Code” =>“BOOK", “Description” => "Books", “Price” => 50),

array (“Code” => "DVDs",“Description” => “Movies",“Price” => 15),

array(“Code” => “CDs", “Description” => “Music", “Price” => 20)

);

for ($row = 0; $row < 3; $row++)

{

echo $AmazonProducts[$row][“Code”] . “ ” .

$AmazonProducts[$row][“Description”] . “ ” .

$AmazonProducts[$row][“Price”];

}

Purpose Syntax Example

To access

specific value

echo $array_name[Index]; echo $number[2];

echo $numbers[0] . " and " .

$numbers[2] ;

To access all

values

foreach (array_name as

variable_name)

{

echo $variable_name;

}

foreach ($numbers as $value)

{

echo "Value is $value
";

}

Accessing

value from

multidimensi

onal array

 for ($row = 0; $row < 3; $row++)

{

for ($column = 0; $column < 3;

$column++)

 Unit 1 : Core PHP

TYBCA (Sem – 5) 22

 {

echo $AmazonProducts

[$row] [$column] . “
”;

}

}

Sorts the

values in

array [it

replaces key

with 0,1,2,3]

sort($array_name)

Sort the

value but

key-value

associations

are

preserved.

asort($array)

Sorts array

by its keys,

rather than

by its values.

Key-value

associations

are

preserved.

Ksort()

rsort($array), arsort($array), krsort($array) – functions behave the same as

sort,asort and ksort respectively, but sort in the reverse order.

Split string

value in array

$array_name=explode(“De

limiter”,”String”);

// It takes an argument of

a string and a delimiter and

returns an array consisting

of substrings of the string.

$str=”a:b:c:d”;

$arr=explode(“:”,$str);

Convert

array into

string

$string=implode(“Delimiter

”,”Array”);

$str = implode("^",$ar");

$str has the value: "a^b^c^d".

 Unit 1 : Core PHP

TYBCA (Sem – 5) 23

 //It takes an array and

returns a string where the

entries are appended

together using a delimiter

Current

pointer value

current($array_name) $snacks=array(“chips”,”candy”);

$current_pointer=current($snacks);

echo $ current_pointer;

Display next

and previous

pointer value

next($array_name)

prev($array_name)

$snack=next($snacks);

print(“The 2nd snack is $snack”);

//display candy

$snack=prev($snacks);

print(“The 1st snack is $snack”);

//display chips

Moves

“current" to

the last

element in

the array and

then

dereferences

it.

end($array_name)

Moves an

array's

"current"

pointer to the

first element

in the array

and then

dereferences

it.

reset($array_name)

Used to

delete

element as

per assigned

array index.

unset($array_name[index]

);

$a=array(1,2,3);

unset($a[0]);

print_r($a);

 Unit 1 : Core PHP

TYBCA (Sem – 5) 24

creates an

array by

using the

elements

from one

"keys" array

and one

"values"

array.

Note: Both

arrays must

have equal

number of

elements!

array_combine($array1,$a

rray2);

$fname=array("Peter","Ben","Joe");

$age=array("35","37","43");

$c=array_combine($fname,$age);

print_r($c);

PHP Loops

 while - loops through a block of code as long as the specified condition is

true

 do...while - loops through a block of code once, and then repeats the loop

as long as the specified condition is true

 for - loops through a block of code a specified number of times

 foreach - loops through a block of code for each element in an array

while Loop

The while loop executes a block of code as long as the specified condition is true.

Syntax

while (condition is true) {

code to be executed;

}

Example

<?PHP

$x = 1;

while($x <= 5) {

 Unit 1 : Core PHP

TYBCA (Sem – 5) 25

echo "The number is: $x
";

$x++;

}

?>

do...while Loop

The do...while loop will always execute the block of code once, it will then check the

condition, and repeat the loop while the specified condition is true.

Syntax

do {

code to be executed;

} while (condition is true);

The example below first sets a variable $x to 1 ($x = 1).

Then, the do while loop will write some output.

Then increment the variable $x with 1.

Then the condition is checked (is $x less than, or equal to 5?), and the loop will

continue to run as long as $x is less than, or equal to 5:

Example

<?PHP

$x = 1;

do {

echo "The number is: $x
";

$x++;

} while ($x <= 5);

?>

for Loop

The for loop is used when you know in advance how many times the script should

run.

Syntax

for (init counter; test counter; increment counter)

 Unit 1 : Core PHP

TYBCA (Sem – 5) 26

{

code to be executed for each iteration;

}

Parameters:

 init counter: Initialize the loop counter value

 test counter: Evaluated for each loop iteration. If it evaluates to TRUE, the

loop continues. If it evaluates to FALSE, the loop ends.

 increment counter: Increases the loop counter value

The example below displays the numbers from 0 to 10:

Example

<?PHP

for ($x = 0; $x <= 10; $x++)

{

echo "The number is: $x
";

}

?>

foreach Loop

The foreach loop works only on arrays, and is used to loop through each key/value

pair in an array.

Syntax

foreach ($array as $value)

{

code to be executed;

}

For every loop iteration, the value of the current array element is assigned to $value

and the array pointer is moved by one, until it reaches the last array element.

Examples

<?PHP

$colors = array("red", "green", "blue", "yellow");

foreach ($colors as $value)

 Unit 1 : Core PHP

TYBCA (Sem – 5) 27

{

echo "$value
";

}

?>

Break

 You have already seen the break statement used in an earlier chapter of this

tutorial. It was used to "jump out" of a switch statement.

 The break statement can also be used to jump out of a loop.

 This example jumps out of the loop when x is equal to 4:

Example

<?PHP

for ($x = 0; $x < 10; $x++)

{

if ($x == 4)

{

break;

}

echo "The number is: $x
";

}

?>

Continue

The continue statement breaks one iteration (in the loop), if a specified condition

occurs, and continues with the next iteration in the loop.

This example skips the value of 4:

Example

<?PHP

for ($x = 0; $x < 10; $x++)

{

if ($x == 4)

{

continue;

}

 Unit 1 : Core PHP

TYBCA (Sem – 5) 28

echo "The number is: $x
";

}

?>

include()

 One of the most useful tools is to insert another php script from a file into

the current php script.

 The command include("filename"); will import contents of a text file called

filename and insert it at the include spot.

 The included text may be composed of XHTML, PHP or both.

 The include() function is mostly used when the file is not required and the

application should continue to execute its process when the file is not found.

 The include() function will only produce a warning (E_WARNING) and the

script will continue to execute.

Example:

File 1: menu.php

HOME

CONTACT US

StAFF

File 2 :Student.php

<html>

<head></head>

<body>

<?php

include(“menu.php”);

//If menu.php is not found then also remaining echo statement in script will be

executed.

?>

</body>

</html>

 Unit 1 : Core PHP

https://www.geeksforgeeks.org/php-types-of-errors/

TYBCA (Sem – 5) 29

require()

 Syntax and uses is as same as include() but the difference is that, if the file

is not found the remaining script is also not executed.

 The require() function is mostly used when the file is mandatory for the

application.

 The require() will produce a fatal error (E_COMPILE_ERROR) along with the

warning and the script will stop its execution.

Functions

 Function is a block of statement that can be used repeatedly in a program.

 A function will not execute automatically when a page loads.

 Function will be executed by a call to the function.

Create function:

 A user-defined function declaration starts with a keyword function

Syntax:

function functionName(parameters)

{

function-body

}

Example:

function generateFooter()

{

echo "Copyright 2010 W. Jason Gilmore";

}

Once defined, you can call this function like so:

<?php

generateFooter();

?>

 Unit 1 : Core PHP

TYBCA (Sem – 5) 30

Passing Arguments by Value

function calcSalesTax($price, $tax)

{

$total = $price + ($price * $tax);

echo "Total cost: $total";

}

Passing Arguments by Reference

<?php

$cost = 20.99;

$tax = 0.0575;

function calculateCost(&$cost, $tax)

{

// Modify the $cost variable

$cost = $cost + ($cost * $tax);

// Perform some random change to the $tax variable.

$tax += 4;

}

calculateCost($cost, $tax);

printf("Tax is %01.2f%% ", $tax*100);

printf("Cost is: $%01.2f", $cost);

?>

Form Handling

 There are two ways the browser client can send information to the web

server.

1. The GET Method

2. The POST Method

 Before the browser sends the information, it encodes it using a scheme called

URL encoding.

 In this scheme, name/value pairs are joined with equal signs and different

pairs are separated by the ampersand.

o name1=value1&name2=value2&name3=value3

 Unit 1 : Core PHP

TYBCA (Sem – 5) 31

GET Method

 The GET method sends the encoded user information appended to the page

request.

 The page and the encoded information are separated by the “?” character.

o The GET method produces a long string that appears in your server logs, in

the browser's Location: box.

o The GET method is restricted to send up to 1024 characters only.

o Never use GET method if you have password or other sensitive information

to be sent to the server.

o GET can't be used to send binary data, like images or word documents, to

the server.

o The data sent by GET method can be accessed using QUERY_STRING

environment variable.

o The PHP provides $_GET associative array to access all the sent information

using GET method.

POST Method

 The POST method transfers information via HTTP headers.

o The information is encoded as described in case of GET method and put into

a header called QUERY_STRING.

o The POST method does not have any restriction on data size to be sent.

o The POST method can be used to send ASCII as well as binary data.

o The data sent by POST method goes through HTTP header so security

depends on HTTP protocol. By using Secure HTTP you can make sure that

your information is secure.

o The PHP provides $_POST associative array to access all the sent

information using POST method.

Access Data

 Access submitted data in the relevant array for the submission type, using the

input name as a key.

<form action=“path/to/submit/page” method=“get”>

<input type=“text” name=“email”>

</form>

$email = $_GET[‘email’];

 Unit 1 : Core PHP

TYBCA (Sem – 5) 32

Work with XHTML Form

 The form is enclosed in form tags:

<form action=“path/to/submit/page” method=“get”>

<!–- form contents -->

</form>

o action=“…” is the page that the form should submit its data to.

o method=“…” is the method by which the form data is submitted. The

option is either get or post. If the method is get the data is passed in the

URL string, if the method is post it is passed as a separate file.

$_GET $_POST

In GET method we cannot send large

amount of data rather limited data of

some number of characters is sent

because the request parameter is

appended into the URL.

In POST method large amount of data

can be sent because the request

parameter is appended into the body.

GET requests are only used to request

data (not modify)

POST requests can be used to create and

modify data.

GET request is comparatively less

secure because the data is exposed in

the URL bar.

POST request is comparatively more

secure because the data is not exposed

in the URL bar.

 Unit 1 : Core PHP

TYBCA (Sem – 5) 33

Request made through GET method are

stored in Browser history.

Request made through POST method is

not stored in Browser history.

GET method request can be saved as

bookmark in browser.

POST method request cannot be saved as

bookmark in browser.

In GET method only ASCII characters

are allowed.

In POST method all types of data is

allowed.

Request made through GET method are

stored in cache memory of Browser.

Request made through POST method are

not stored in cache memory of Browser.

Data passed through GET method can

be easily stolen by attackers as the data

is visible to everyone. GET requests

should never be used when dealing with

sensitive data

Data passed through POST method

cannot be easily stolen by attackers as

the URL Data is not displayed in the URL

In GET method, the Encoding type is

application/x-www-form-urlencoded

In POSTmethod, the encoding type

is application/x-www-form-

urlencoded or multipart/form-data. Use

multipart encoding for binary data

Example:

<!DOCTYPE html>

<html>

<body>

<form action="getmethod.php"

method="GET">

Username:

<input type="text"

name="username" />

City:

<input type="text" name="city"

/>

<input type="submit" />

</form>

</body>

</html>

Example:

<!DOCTYPE html>

<html>

<body>

<form action="postmethod.php"

method="post">

Username:

<input type="text"

name="username" />

Area of Study:

<input type="text" name="area"

/>

<input type="submit" />

</form>

</body>

</html>

 Unit 1 : Core PHP

TYBCA (Sem – 5) 34

<!DOCTYPE html>

<html>

<body>

Welcome

<?php echo $_GET["username"]; ?>

</br>

Your City is:

<?php echo $_GET["city"]; ?>

</body>

</html>

<!DOCTYPE html>

<html>

<body>

Welcome

<?php echo $_POST["username"]; ?>

</br>

Your Area of Study is:

<?php echo $_POST["area"]; ?>

</body>

</html>

Basic Input Validation and Sanitization in PHP

When developing PHP applications, especially web forms, it's essential to validate

and sanitize user input to prevent common security vulnerabilities such as XSS

(Cross-Site Scripting), SQL Injection, and malformed data entry.

1. Input Validation vs. Sanitization

 Validation: Ensures the data is of the correct type, format, and meets certain

criteria (e.g., email format, number range).

 Sanitization: Cleans the data by removing unwanted characters or encoding

it to prevent malicious code execution.

2. Common PHP Functions for Input Validation and Sanitization

Field Validation Rule

Name Required- Must only contain letters and whitespace

E-mail Required- Must be a valid email format (must include @ and .)

Website Optional- If provided, must be a valid URL

Gender Required- Must select one option (e.g., Male/Female/Other)

Aadhar Card
Required- Must be a 12-digit number only (exactly 12 digits, all

numeric)

 Unit 1 : Core PHP

TYBCA (Sem – 5) 35

Type Function Description

Validation filter_var()
Validates email, URLs, integers,

etc.

Sanitization htmlspecialchars()
Converts special HTML characters

to entities

Sanitization strip_tags() Removes HTML and PHP tags

Validation preg_match()
Validates strings using regular

expressions

Both filter_input()
Retrieves and filters external input

(e.g., $_POST)

3. Example of Validation and Sanitization

<?php
if ($_SERVER["REQUEST_METHOD"] == "POST") {

 // Sanitize name input

 $name = htmlspecialchars(strip_tags($_POST["name"]));

 // Validate email input

 $email = filter_var($_POST["email"], FILTER_VALIDATE_EMAIL);

 // Sanitize and validate integer age

 $age = filter_var($_POST["age"], FILTER_SANITIZE_NUMBER_INT);
 if (!filter_var($age, FILTER_VALIDATE_INT)) {

 echo "Invalid age.";

 }

 // Check if email is valid

 if ($email === false) {

 echo "Invalid email format.";

 } else {
 echo "Welcome, $name. Your email is $email and your age is $age.";

 }

}

?>

 Unit 1 : Core PHP

	PHP Introduction:
	o Client-Side (Front-end):
	o Server-Side (Back-end):

	Role of PHP in server-side web development:
	 Dynamic Content Generation:
	 Database Interaction:
	 Form Handling and Data Processing:
	 Session Management and User Authentication:
	 File System Operations:
	 Integration with Other Technologies:
	 Security:

	Characteristics of PHP
	History and evolution of PHP:
	Echo Keyword
	echo and print statement
	Comments:
	Variables:
	Rules for PHP variables:

	Variable Scope
	PHP $ and $$ Variables:
	Constants
	Syntax:
	Example:

	Data types
	var_dump(variable name)
	Type Casting
	How it works:
	Example:
	Important considerations:

	Operators
	Conditional Statements
	The if Statement:
	Syntax:
	Example:
	The if...else Statement
	Syntax: (1)
	Example: (1)
	The if...elseif...else Statement
	Syntax: (2)
	Example: (2)
	The switch-case statement:
	Syntax: (3)
	Example: Consider the following example, which display a different message for each day.

	Arrays
	There are 3 types of array in PHP.
	Indexed Array
	 There are two ways to define indexed array:
	OR
	Associative Array
	OR (1)
	Multidimensional array

	PHP Loops
	while Loop
	Syntax
	Example
	do...while Loop
	Syntax (1)
	Example (1)
	for Loop
	Syntax (2)
	Parameters:
	Example (2)
	foreach Loop
	Syntax (3)
	Examples

	Break
	Example

	Continue
	Example

	include()
	Example:
	File 2 :Student.php

	require()
	Functions
	Create function:
	Syntax:
	Example:
	Once defined, you can call this function like so:
	Passing Arguments by Value
	Passing Arguments by Reference

	Form Handling
	GET Method
	POST Method
	Access Data
	Work with XHTML Form
	1. Input Validation vs. Sanitization

